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A B S T R A C T   

Unprecedented rates of biodiversity loss and intensifying human attempts to rectify the biodiversity crisis have 
heightened the need for standardized, large-scale, long-duration biodiversity monitoring at fine temporal reso-
lution. While some innovative technologies such as passive acoustic monitoring are well suited for such moni-
toring challenges, many questions remain as to how they should be scaled out and optimally implemented across 
ecosystems. 

Our research questions center on temporal sampling regimes—how frequently and how long one should 
collect data to represent biodiversity conditions over a given timeframe. Addressing this concern in the context of 
passive acoustic monitoring, we investigated whether temporal soundscape variability—the characteristic short- 
term acoustic change in an environment—is consistent across ecosystems and times of day, and we considered 
how various temporal subsampling schemes affect the representativeness of resultant acoustic index values, 
relative to continuous sampling. We quantified soundscape variability at eight sites across four continents based 
on temporal autocorrelation ranges and standard deviations of acoustic index values, and we created a heuristic 
model to classify types of soundscape variability based on those two variables. 

Drawing on values derived from three distinct acoustic indices, we found that the characteristic temporal 
variability of soundscapes varied between sites and times of day (dawn, daytime, dusk, and nighttime). Some 
sites exhibited little difference in variability between times of day whereas other sites exhibited greater within- 
site differences between times of day than many inter-site differences. Daytime soundscapes generally tended to 
exhibit more temporal variability than nighttime soundscapes. 

We also compared potential subsampling schemes that could be advantageous in terms of power, data storage, 
and data analysis costs by modeling subsample error as a function of total analysis time and number of sub-
samples within a larger block of time. Greater numbers of evenly distributed subdivisions drastically increased 
the representativeness of a sampling scheme, while increases in subsample duration yielded fairly minimal gains 
in representativeness between 33 and 67% of the full time one wishes to represent. Generally, our results show 
that for a long-term, fine temporal resolution monitoring program, one should record in evenly distributed 
durations at least as short as 1 min while only recording up to a third of the time one wishes to represent. While 
more continuous monitoring can be advantageous and necessary in many cases, current economic and logistical 
limitations in power, data storage, and analysis capabilities will often warrant optimized subsampling designs.   

1. Introduction 

Animal biodiversity is in global decline, and some have stated that 
Earth’s sixth mass extinction event is in progress (Barnosky et al., 2011; 
Ceballos et al., 2015; Kolbert, 2014). As we try to monitor and address 

such significant global environmental changes, governments, nongov-
ernmental organizations, and private landowners need to better un-
derstand how and why ecosystems change over time in response to 
management initiatives and ecological disturbances (Block et al., 2001; 
Fancy et al., 2009; Spellerberg, 2005). For each monitoring effort, those 

DOI of original article: https://doi.org/10.1016/j.ecolind.2019.105845. 
Abbreviations: ACI, Acoustic complexity index; AR, Autocorrelation range; BI, Bioacoustic index; CGS, Center for Global Soundscapes; DF, Dante Francomano; Hf, 

Spectral entropy; NS, Number of subdivisions; PAM, Passive acoustic monitoring; SD, Standard deviation; TAT, Total analysis time; WA, Wildlife Acoustics. 
* Corresponding author. 

E-mail addresses: dfrancom@purdue.edu (D. Francomano), bgottesm@purdue.edu (B.L. Gottesman), bpijanow@purdue.edu (B.C. Pijanowski).  

Contents lists available at ScienceDirect 

Ecological Indicators 

journal homepage: www.elsevier.com/locate/ecolind 

https://doi.org/10.1016/j.ecolind.2020.106794    

mailto:https://doi.org/10.1016/j.ecolind.2019.105845
mailto:dfrancom@purdue.edu
mailto:bgottesm@purdue.edu
mailto:bpijanow@purdue.edu
www.sciencedirect.com/science/journal/1470160X
https://www.elsevier.com/locate/ecolind
https://doi.org/10.1016/j.ecolind.2020.106794
https://doi.org/10.1016/j.ecolind.2020.106794
https://doi.org/10.1016/j.ecolind.2020.106794
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ecolind.2020.106794&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/


Ecological Indicators 121 (2021) 106794

2

conducting the monitoring must determine the overall duration of the 
monitoring program and the manner in which sampling will be sched-
uled within that overall duration. At the heart of these decisions is the 
concept of temporal variability. Ecosystems change over time in 
response to a vast array of interdependent ecological variables, and 
those changes occur at varying rates (Landres et al., 1999). Ecological 
monitoring must employ temporal sampling schemes designed to iden-
tify a signal (the change related to a driver of interest) amongst noise 
(change related to other inherent system variability) at the relevant 
temporal scale. 

To maximize comprehensiveness and the chance of signal detection, 
monitoring would be continuous and of infinite duration. Unfortunately, 
such comprehensiveness is currently unattainable for most variables due 
to numerous constraints including funding, labor costs, fieldwork lo-
gistics, equipment, data storage resources, and data analysis resources 
(Caughlan and Oakley, 2001). As a result of the inherent tradeoff be-
tween monitoring cost and comprehensiveness, many monitoring pro-
grams are conducted with wide temporal gaps between monitoring 
events (e.g., biennial or decennial measurements) and limited temporal 
extent of monitoring events (e.g., measurements only occurring during 
1 week of summer mornings). Wide temporal gaps preclude gaining 
information at fine temporal resolution. For example, while the North 
American Breeding Bird Survey (USGS Patuxent Wildlife Research 
Center, 2018) and Audubon Christmas Bird Count (National Audubon 
Society, 2019) provide rich datasets on avian diversity and spatial dis-
tributions at two points in the year (and just one time of day for the 
Breeding Bird Survey), similar data are not available for the rest of the 
year or additional times of day. Moreover, such wide temporal gaps 
could misrepresent the system if monitoring events coincide with a se-
ries of highs or lows in a quickly fluctuating variable or are periodic with 
a different frequency than a periodic variable being measured. Mannocci 
et al. (2017) highlight the importance of inter-annual variability in the 
California Current ecosystem due to the El Niño Southern Oscillation, 
and they emphasize the inadequacy of modeling based on low-resolution 
(e.g., decadal) measurements of variables in that system. Similarly, 
limited temporal extent only provides snapshots of variables that likely 
fluctuate outside of the temporal extent of the monitoring event. A 2- 
year study in the California Current would yield an incomplete picture 
of that system’s states and dynamics. 

Periodic monitoring events are not inherently problematic, particu-
larly when there is preexisting knowledge of a system’s temporal dy-
namics. For example, it is widely acknowledged that spring mornings 
are optimal times for assessing populations of most songbird species in 
temperate ecosystems (Ralph et al., 1995). That being said, continuous 
or near-continuous monitoring can be desirable for increased resolution 
when possible and can be necessary when little is known about the 
temporal variability of a system. Recent technological advances have 
facilitated the development of several methods of biodiversity or wild-
life monitoring that generate continuous or near-continuous datasets. 
GPS tracking, camera trapping, and passive acoustic monitoring (PAM) 
are several examples of such promising emerging technologies that will 
be enhanced by refined analytical approaches with a greater focus on the 
temporal aspects of the data they produce (Cushman, 2010; Frey et al., 
2017; Gage and Axel, 2014). 

In the past decade, the emergence of soundscape ecology and/or 
ecoacoustics has taken PAM from its origins in bioacoustics and applied 
it to animal community biodiversity assessment and monitoring, based 
on the principle that aspects of biophony (sound from biological sour-
ces) are reflective of animal community biodiversity (Pijanowski et al., 
2011b; Sueur et al., 2014; Sueur and Farina, 2015). A number of studies 
have begun to test the relationship between acoustic indices (empirical 
soundscape measurements) and biodiversity, and while results have 
been inconsistent, some indices have shown promise in certain situa-
tions, with both simulated and field recordings. Various acoustic indices 
have been shown to be correlated with: the number of biological sounds 
in a recording, species richness (derived from a recording or observed in 

situ), species evenness, Shannon diversity of species, individual abun-
dance, or measures of functional diversity (Boelman et al., 2007; Buxton 
et al., 2018; Eldridge et al., 2018; Elise et al., 2019; Fuller et al., 2015; 
Harris et al., 2016; Jorge et al., 2018; Machado et al., 2017; Mammides 
et al., 2017; Pieretti et al., 2011; Sueur et al., 2008b; Zhao et al., 2019). 
The validation of acoustic indices is an ongoing process, but should not 
impede attempts to explore their PAM functions at this moment, as PAM 
has realized and potential applications for spatio-temporal monitoring 
of distribution patterns, phenology, and disturbance impacts from spe-
cies to community levels (Sueur and Farina, 2015). 

PAM is a method for which continuous monitoring is possible, and 
such monitoring could be necessary in certain contexts, such as when 
one is interested in short-duration, infrequent sound events (Towsey 
et al., 2014a; Yoccoz et al., 2001). If triggered recording is impossible or 
impractical for example, continuous monitoring would be desirable to 
ensure that rare sounds of interest are captured. Technological ad-
vancements of the past 2 decades have reduced power consumption and 
increased capacity for storage and analysis of acoustic data from PAM, 
making continuous monitoring feasible in studies with limited overall 
duration and few spatial replicates (Hill et al., 2018; Merchant et al., 
2015). Reduced size and cost of PAM units are also making spatial 
replication much easier (e.g., the Frontier Labs “Bioacoustic Audio 
Recorder” (Frontier Labs, 2019), the Wildlife Acoustics “Song Meter 
Mini” (Wildlife Acoustics Inc., 2019), and especially the Open Acoustic 
Devices “AudioMoth” (Open Acoustic Devices, 2019)). Applications 
with increased duration and spatial coverage or resolution like the 
Australian Acoustic Observatory (Roe et al., 2018) are becoming 
increasingly realistic, and more such projects can be expected in the near 
future. 

The potential continuous application of PAM is an asset when used to 
address certain questions (e.g., determining when rare sounds occur or 
considering how sounds may be triggered by the sounds preceding 
them), but continuous PAM is likely unnecessary and undesirable for the 
majority of applications in which researchers are interested in ecological 
change occurring over time scales of weeks to years. Continuous long- 
term PAM provides rich, potentially valuable data, but the preserva-
tion and use of that data requires technology that is often expensive to 
install and maintain, and those costs may outweigh the benefits of the 
additional data. Replacing power sources and data storage units in PAM 
units can be a time consuming and costly endeavor, particularly in 
multi-year studies and hard-to-access environments like marine systems, 
so such applications require well-informed decisions about sampling 
schedules. Less comprehensive temporal sampling schemes would 
reduce the number of field excursions needed to change batteries and 
memory cards, potentially allowing time and money to be redirected 
towards increased spatial replication or the collection of additional 
relevant data about local flora and fauna. Limiting temporal sampling 
schemes would also reduce the logistical and financial challenges asso-
ciated with data storage and processing. 

The temporal variability of ecosystems is reflected in the variability 
of biophony emitted from them. Temporal variability in biophony stems 
from a variety of biological and ecological factors operating over a wide 
range of time scales that PAM practitioners must consider (Table 1). On 
the order of minutes, individual animals’ patterns and characteristics of 
sound production are relevant. Over hours, weather events, changing 
light levels, tides, and animals’ endogenous clocks may trigger changes 
in biophony like the widely recognized dawn and dusk choruses (Got-
tesman et al., 2018; Rodriguez et al., 2014). On longer scales, lunar 
cycles can affect biophony in marine systems (Staaterman et al., 2014) 
and for some terrestrial taxa like bats and katydids (Lang et al., 2006), 
and patterns of mating, reproduction, and migration can cause seasonal 
changes in biophony (Rice et al., 2017; Towsey et al., 2014b).Population 
dynamics, climate change, and certain disturbances can bring about 
even slower rates of change in biophony (Buxton et al., 2016; Campos- 
Cerqueira and Aide, 2017; Krause and Farina, 2016). Characterizing 
temporal soundscape variability across ecosystems and spatiotemporal 

D. Francomano et al.                                                                                                                                                                                                                           



Ecological Indicators 121 (2021) 106794

3

scales would provide important biogeographical contextualization for 
the development of soundscape-based disturbance indicators—a pri-
mary research objective of soundscape ecology (Gasc et al., 2017; 
Lomolino et al., 2015). Of course, such indicators are dependent on 
baseline measurements that could simply represent average index values 
or even typical diel dynamics. Those baseline measurements must be 
grounded in a thorough understanding of the temporal variability that 
could bias them and must be obtained with an appropriate sampling 
schedule according to that potential bias (Almeira and Guecha, 2019). 
This study represents an attempt to characterize within-day temporal 
variability of acoustic indices and determine how the nature of that 
variability can influence the representativeness of various subsampling 
schedules. The acoustic indices we employed do not necessarily corre-
late with any specific measure of biodiversity in every environment, but 
they can still provide meaningful information about the temporal vari-
ability of soundscapes more broadly. 

In this study we analyzed acoustic recordings from eight sites across 
four continents to characterize short-term (within-2-hour) and diel 
(within-24-hour) soundscape variability and to provide sampling 
schedule guidance to PAM practitioners. Using a set of three comple-
mentary acoustic indices, we addressed two principal questions: 1) is 
temporal soundscape variability consistent across ecosystems and times 
of day? and 2) considering any spatiotemporal differences in temporal 
variability, how do various temporal subsampling schemes affect the 
representativeness of resultant acoustic index values, relative to 
continuous sampling? 

Regarding the first question, we hypothesized that temporal sound-
scape variability would be inconsistent across ecosystems because 
different ecosystems host characteristic animal assemblages that exhibit 

characteristic temporal patterns of sound production. Additionally, we 
hypothesized that temporal soundscape variability would be higher 
during daytime relative to nighttime, as nocturnally acoustically active 
taxa like insects and amphibians tend to produce sound repetitively and 
consistently, whereas diurnal taxa like birds tend to produce sound more 
sporadically. In terms of our second question, we expected that more 
subdivisions within sampling schedules would reduce “subsample error” 
(deviation from a “true” full-duration value caused by subsampling) by 
maximizing the chance of capturing rare sound events, while mini-
mizing their influence (Cook and Hartley, 2018). Despite the inherent 
loss of precision due to subsampling, we also hypothesized that sub-
sampling would yield acceptably small subsample errors and that sub-
sampling could efficiently and adequately represent values derived from 
continuous recording. 

2. Methods 

2.1. Goals 

Our goals related to each question were as follows: For Question 1 
(variability characterization), we sought to a) measure soundscape 
variability at diverse sites based on temporal autocorrelation ranges and 
standard deviations of acoustic index values and b) compare soundscape 
variability between sites and times of day. For Question 2 (subsampling 
implications), we sought to model subsample error as a function of total 
analysis time and number of subdivisions. 

Table 1 
Drivers of biophonic temporal variability across scales.  

Temporal 
scale 

Drivers Consequences 

Seconds – 
hours 

• Individual repertoire size 
• Sound characteristics (amplitude envelope and frequency modulation) 
• Sound production patterns (continuous, repetitive, or sporadic) 
• Acoustic community abundance and diversity 

• Individuals emit more or less types of sounds 
• Single sounds contain more or less variability 
• Individuals produce a consistent or highly variable composition of 
biophony 
• Higher-diversity assemblages likely produce higher-variability biophony  

Hours – days • Animal movement causing short-term changes to acoustic community abundance 
and diversity 
• Endogenous clocks regulating acoustic activity 
• Changing light levels 
• Changing temperature 
• Changing precipitation 

• Higher-diversity assemblages likely produce higher-variability biophony  

• The acoustically active community changes over time 
• Individuals produce more or less sound 
• Individuals produce more or less sound, sometimes at different 
frequencies 
• Individuals produce more or less sound  

Days – 
seasons 

• Animal movement causing short-term changes to acoustic community abundance 
and diversity 
• Weather system movement 
• Lunar cycles affecting light levels 
• Lunar cycles directly affecting sound production 
• Pulse disturbances (disturbing influences of short duration that begin and end 
rapidly) 

• Higher-diversity assemblages likely produce higher-variability biophony  

• Individuals produce more or less sound 
• Individuals produce more or less sound 
• Individuals produce more or less sound 
• Individuals produce more or less sound  

Seasons – 
years 

• Emergence and breeding phenology of soniferous species  

• Animal movement and migration causing seasonal changes to acoustic community 
abundance and diversity 
• Changes in repertoires and sound production patterns 
• Press and ramp disturbances (disturbing influences that are continuous and of long 
duration (press) or slowly increase in intensity (ramp)) 
• Phenological changes in habitat structure 

• Composition of acoustic communities changes and higher-diversity 
assemblages likely produce higher-variability biophony 
• Higher-diversity assemblages likely produce higher-variability biophony  

• Individuals produce a more consistent or variable composition of 
biophony 
• Composition of acoustic communities changes or individuals produce 
more or less sound  

• Biophony propagates differently  

Inter-annual • Population changes  

• Press and ramp disturbances (disturbing influences that are continuous and of long 
duration (press) or slowly increase in intensity (ramp)) 

• Individual species account for more or less of the contributions to overall 
biophony 
• Composition of acoustic communities changes or individuals produce 
more or less sound  
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Table 2 
Site information, recording parameters, and data coverage. Under “Recorder model”, “WA” indicates “Wildlife Acoustics”. Ecoregions are classified as by Olson et al. (2001) and Spalding et al. (2007).  

Site name State/ province, 
country 

Ecoregion Coordinates Recorder 
model 

Sample 
rate 

User- 
defined 
gain 

Preamplifier 
gain 

Analog to digital 
converter gain 

Filtering Frequency 
analysis range 

Start 
date 

End 
date 

Number of 
complete days 

Percent 
missing files 

Penguin Colony Tierra del Fuego, 
Argentina 

Magellanic Subpolar 
Forests 

54.9075◦ S, 
67.3756◦ W 

WA SM4 48 kHz +12 dB +26 dB +3dB none 0.15 – 24 kHz 2016/ 
02/24 

2016/ 
03/19 

15 18  

Tropical Rainforest Heredia, Costa Rica Isthmian-Atlantic Moist 
Forests 

10.4237◦ N, 
84.0144◦ W 

WA SM4 44.1 kHz +20 dB +26 dB +3dB none 1 – 22.05 kHz 2016/ 
07/27 

2016/ 
08/02 

5 0  

Mongolian Grassland Tšv, Mongolia Mongolian-Manchurian 
Grassland 

47.6917◦ N, 
105.8835◦ E 

WA SM3 48 kHz 0 dB +24 dB +3dB none 0 – 24 kHz 2015/ 
06/01 

2015/ 
07/06 

22 9  

Coral Reef Puerto Rico, United 
States of America 

Greater Antilles 17.9349◦ N, 
67.0485◦ W 

WA SM3M 48 kHz 0 dB +24 dB +3dB none 0 – 24 kHz 2017/ 
07/03 

2017/ 
08/11 

37 0  

Miombo Swamp Rukwa, Tanzania Central Zambezian 
Miombo Woodlands 

5.4312◦ S, 
30.5775◦ E 

WA SM4 48 kHz +18 dB +26 dB +3dB high-pass at 
220 Hz 

0.15 – 24 kHz 2017/ 
03/25 

2017/ 
04/08 

14 0  

Nebraska Prairie Nebraska, United 
States of America 

Central and Southern 
Mixed Grasslands 

40.7292◦ N, 
98.5856◦ W 

WA SM4 48 kHz +12 dB +26 dB +3dB high-pass at 
220 Hz 

0.15 – 24 kHz 2017/ 
08/17 

2017/ 
08/27 

9 0  

California Woodland California, United 
States of America 

California Interior 
Chaparral and 
Woodlands 

38.42◦ N, 
122.592◦ W 

WA SM4 44.1 kHz +18 dB +26 dB +3dB high-pass at 
220 Hz 

0.3 – 22.05 kHz 2017/ 
08/18 

2017/ 
08/25 

7 0  

Magellanic Forest Tierra del Fuego, 
Argentina 

Magellanic Subpolar 
Forests 

54.8473◦ S, 
68.5442◦ W 

WA SM4 48 kHz +12 dB +26 dB +3dB none 0.4 – 24 kHz 2016/ 
02/17 

2016/ 
03/15 

19 15  
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2.2. Site selection 

For each question, we employed acoustic data from eight sites in 
diverse ecosystems on four continents. A site was included in this study 
if: 1) there were acoustic recordings from that site in the archives of the 
Center for Global Soundscapes (CGS) at Purdue University, 2) the re-
cordings spanned at least 5 complete, consecutive days, 3) each 
recording was at least 59 min in length, and 4) aural assessment of 
sample recordings did not reveal predominance of geophony or tech-
nophony. Biophony-dominated sites were chosen in order to predomi-
nantly measure the temporal variability of biophony. Locations and 
details for the eight sites meeting the above conditions are presented in 
Table 2 and Fig. 1. All sites were terrestrial with the exception of Coral 
Reef, which was located underwater near a coral reef off the coast of 
Puerto Rico. While these sites do not represent random locations, they 
are stratified across an assortment of biomes and a range of latitudes and 
longitudes. 

2.3. Data preparation 

We first converted any recordings that existed as .flac files in the CGS 
archives to .wav format using R (R Core Team, 2018) and the R packages 
“tuneR” and “seewave” (Ligges et al., 2016; Sueur et al., 2008a). All code 
associated with this study is available on GitHub at https://github.rcac. 
purdue.edu/PijanowskiGroup/Francomano_et_al_2020_Temporal_Varia 
bility. We then removed corrupted files and files with durations below 
59 min. Files from the site Nebraska Prairie did not begin at the start of 
each new hour, so consecutive files for that site were combined and cut 
to a duration of 59 min with a top-of-the-hour start time. Other files that 
did not begin precisely at the top of the hour had their start times 
rounded (by up to 2 min and 18 s) to consider them as beginning pre-
cisely at the top of the hour. An evident DC-offset was removed from files 
from Mongolian Grassland and Coral Reef. The left channel was used for 
all analysis (aside from Coral Reef, which was recorded in mono). Data 
coverage over time is shown in Figs. S1 – S8. 24-hour spectrograms for 
each site are presented in Fig. 2, and 1-minute versions of the corre-
sponding audio files are provided on GitHub. 

2.4. Acoustic index calculation 

The acoustic complexity index (ACI; Pieretti et al., 2011), bio-
acoustic index (BI; Boelman et al., 2007), and spectral entropy (Hf; Sueur 
et al., 2008b) were calculated in 59 consecutive 1-minute windows 

within each 59-plus-minute file, beginning at the beginning of the file. 
The 60th minute of each hour was assigned a value of N/A, and those 
values were ignored in subsequent analyses (the recorders wrote files to 
the memory cards during this minute, so a few seconds were typically 
lost). The R package “seewave” was used for the ACI and Hf, while 
“soundecology” (Villanueva-Rivera and Pijanowski, 2016) was used for 
the BI. DF determined a separate frequency range for index calculation 
on files of each site by visualizing and listening to short sections of those 
files in Audacity (Audacity Team, 2015). He examined 24 files—one 
from each hour of the day on days that were randomly selected from all 
the complete days present for each site. He noted the minimum and 
maximum frequencies of biophony in each file and decided on per-site 
frequency ranges that would include almost all biophony that might 
be present at each site. Those frequency ranges are presented in Table 2. 
Geophony and technophony were not considered in this frequency range 
determination, except to determine if a predominance of those sounds 
warranted excluding a site from further analysis. The above indices were 
selected due to their prominence in the soundscape ecology and/or 
ecoacoustics literature, their use in past considerations of study design 
(Pieretti et al., 2015; Quiroz et al., 2017), and their complementary 
nature. The BI provides a good measure of biophonic contributions to 
soundscape amplitude, Hf offers insight into the spectral composition of 
a soundscape, and the ACI incorporates information on changes in the 
spectral distribution of sound over millisecond-level time scales (using 
its default parameters). 

2.5. Question 1 (variability characterization) analysis 

We addressed Question 1 through two methods based on subsets of 
the same data. For both methods, we operationalized the concept of 
temporal variability by calculating standard deviations and autocorre-
lation ranges of acoustic index values. We calculated these for different 
“value lengths” (durations over which 1-minute index values were 
averaged) and “analysis windows” (temporal windows limiting the 
values included in each calculation). We employed value lengths of 1 
min, 5 min, 15 min, and 60 min, and we employed analysis windows of 
5 min, 15 min, 60 min, dawn (a 2-hour window centered on sunrise), 
daytime (the time from 1 h after sunrise to 1 h before sunset), dusk (a 2- 
hour window centered on sunset), and nighttime (the time from 1 h after 
sunset to 1 h before sunrise), and 24 h (Fig. 3). To make standard de-
viations and autocorrelation ranges from daytime and nighttime anal-
ysis windows comparable with those from dawn and dusk analysis 
windows, as many 2-hour segments as possible were selected within 

Fig. 1. Site locations. Penguin Colony and Magellanic Forest overlap substantially on this map, as they are in close proximity relative to a global scale.  
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Fig. 2. 24-hour power spectral density spectrograms. These spectrograms show the first complete day of recordings from each site. Power spectral density was 
calculated following the methods described by Merchant et al. (2015) using a 1-second window length, Hann window, and mean averaging to produce final 
spectrograms with 1-minute temporal resolution. Power is expressed as dB re (20 μPa)2Hz− 1 with the exception of the one marine site, Coral Reef, for which power is 
expressed as dB re (1 μPa)2Hz− 1. All spectrograms have been cropped to a frequency range of 0 – 22.05 kHz, and the 60th minute of each hour is merely a duplication 
of the 59th minute. Horizontal lines at the top of each spectrogram represent the 2-hour dawn and dusk windows centered on sunrise and sunset for each day. 
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daytime and nighttime windows (centered between sunrise and sunset), 
and standard deviations and autocorrelation ranges were calculated on 
each segment and then averaged to produce single values that are 
representative of any 2-hour segment within each daytime or nighttime 
analysis window. Because autocorrelation ranges are not robust when 
calculated on short time-series, value length-analysis window combi-
nations were not considered if the analysis window was less than four 
times the value length (e.g., 5-minute value length in 15-minute analysis 
window) or if the autocorrelation ranges for all acoustic indices were 
0 for at least four sites. We calculated standard deviations using the “sd” 
function and autocorrelation range using the “acf” function, both from 
the “stats” package of R. We defined the significance threshold of the 
autocorrelation function as: 

qnorm
(

1+(1− α)
2

)

̅̅̅
n

√

where qnorm is the quantile function of the normal distribution, α is the 
significance level (0.05 in this case), and n is the number of values in the 
time series. We defined the autocorrelation range (in minutes) as the 

product of the lag at which the autocorrelation function of the given 
time series first becomes less than the significance threshold and the 
value length (in minutes). 

For the first method of addressing Question 1, we visualized within- 
and between-site differences by plotting standard deviations against 
autocorrelation ranges for each site (using inter-day averages). We 
constructed two plots for each index—one showing 1-minute value 
lengths within dawn, daytime, dusk, and nighttime analysis windows 
and another showing 1-hour value lengths in 24-hour analysis windows 
(Fig. 6). This method allowed for visual comparison of a) sites and their 
values at different times of day over a relatively short timeframe (2 h) 
and b) sites over a longer timeframe (24 h). While one could consider 
any value length and analysis window, we believe that these combina-
tions provided useful snapshots of temporal variability on various 
within-day scales. 

For the second method, we conducted non-metric multidimensional 
scaling to plot sites in multidimensional space and check for any obvious 
clustering that would warrant use of adonis and discriminant analysis. 
We used the “metaMDS” function in the R package “vegan” (Oksanen 
et al., 2018) and the Euclidean dissimilarity index. As there was no 
evident clustering (Fig. S9) with a low stress level (0.063), we did not 
pursue this analysis further. 

2.6. Question 2 (subsampling implications) analysis 

For question 2, we separately determined subsample error for “full 
file lengths” of 12 and 60 min. We assigned 1-minute index values to 
dawn, daytime, dusk, and nighttime as described above, and subdivided 
the times of day for each site and day into as many 12- and 60-minute 
blocks as possible. For each block and each index, we calculated 

Fig. 3. Illustration of analysis windows situated within times of day.  

Fig. 4. Illustration of all possible subsampling schemes for 12- (A) and 60-minute (B) full file lengths with a minimum recording duration of 1 min and evenly 
distributed recording start times. “TAT” represents “total analysis time”, and “NS” represents number of subdivisions. Grey blocks represent recorded minutes and 
white blocks represent unrecorded minutes. B is unlabeled for legibility, but the format is the same as A: columns represent minutes 1 – 60 (left to right), and rows 
represent increasing TAT and NS (top to bottom). 
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cumulative means of index values and then defined the subsample error 
as the absolute value of the difference between each cumulative mean 
and the 12- or 60-minute mean for that block. This process resulted in 
vectors of length 12 and 60 that were averaged within each site-time of 
day combination. Additionally, we calculated similar averages of dif-
ferences for non-continuous subsampling—i.e. subsampling with mul-
tiple subdivisions. We calculated average differences for all possible 
evenly distributed subsampling schemes with subdivision durations of 
full minutes (integer values; Fig. 4). 

We then computed separate linear mixed models for each index and 
each full file length. The last value of each continuous subsample error 
vector was not incorporated in the models, as it was necessarily 0. Global 
models including all potential independent variables were constructed 
with subsample error as the dependent variable, site as an independent 
random intercept, and time of day, total analysis time, total analysis 
time squared, total analysis time cubed, number of subdivisions, and the 
interaction between total analysis time and number of subdivisions as 
fixed effects. All non-categorical independent variables were scaled and 
polynomials were orthogonal. Site was incorporated as a random 
intercept to account for the non-independence of the subsample errors 
from each site. Models were computed using the R package “lme4” 
(Bates et al., 2015). All models failed visual tests for normality of re-
siduals and homogeneity of variance, so we conducted a natural log 
transform on subsample error and recomputed the models. Homogene-
ity of variance was then achieved for all models, and despite failing 
Shapiro-Wilk tests, qq-plots indicated that residuals were approximately 
normally distributed. Model selection was conducted using the “dredge” 
function of the R package “MuMIn” (Bartón, 2018) with AICc as the 
evaluation metric. The result of the selection procedure was that all 
independent variables were included in all models. Finally, we recom-
puted models with non-scaled independent variables and non- 
orthogonal polynomials to obtain meaningful coefficients for predic-
tive purposes. 

3. Results and discussion 

3.1. Question 1 (variability characterization) 

As presented in Figs. 5 and 6, temporal variability as measured by 
standard deviation (SD) and autocorrelation range (AR) can be 

categorized in the four following non-discrete conceptual classes: I) high 
SD, high AR; II) low SD, high AR; III) low SD, low AR; and IV) high SD, 
low AR. Class I soundscapes vary substantially, but in a fairly predictable 
manner (e.g., the gradual emergence of an insect or amphibian chorus at 
dusk), whereas Class IV soundscapes vary substantially and unpredict-
ably (e.g., sparse high-amplitude bird sounds). Class II soundscapes vary 
minimally and predictably (e.g., very quiet soundscapes or soundscapes 
with constant insect or amphibian choruses), while Class III soundscapes 
exhibit a small amount of fairly random variation (e.g., sparse low- 
amplitude bird sounds). While somewhat simplistic and based only on 
the means of standard deviations and autocorrelation ranges for the 
present data, this conceptual model is useful for interpretation of the 
following results. 

One could define and measure temporal variability using a variety of 
metrics. We selected standard deviations to provide insight into the 
range and distribution of index values, and we chose autocorrelation 
ranges to highlight the consistency of index values between successive 
time windows. There are likely some aspects of temporal variability that 
are not captured in standard deviations and autocorrelation ranges (such 
as cyclicity), but the two concepts we employed proved useful in 
describing two distinct aspects of temporal variability. If standard de-
viations and autocorrelation ranges were measuring the same compo-
nents of temporal variability, one would expect a predominance of 
points in Classes II and IV indicating a negative relationship between 
standard deviation and autocorrelation range. However, the fact that 
such a relationship is not apparent in any section of Fig. 6 indicates that 
standard deviations and autocorrelation ranges in fact represent distinct 
components of the concept of temporal variability. This lack of corre-
lation is promising for the future application of these metrics in char-
acterizing the temporal variability of soundscapes. 

3.1.1. 1-minute values in 2-hour time of day windows 

3.1.1.1. Cluster dispersion and the relative importance of sites and times of 
day. As assessed visually, the dispersion of each single-site cluster (i.e. 
the area of a convex polygon with the points for each time of day as 
vertices) was variable between sites. For example, Miombo Swamp 
values were much more dispersed than those of Magellanic Forest for the 
BI, and Tropical Rainforest values were much more dispersed than those 
of Nebraska Prairie for Hf. In one respect, it is unsurprising that 
dispersion would differ between sites: it has been widely documented 
that soundscapes exhibit diel dynamics and that the patterns and mag-
nitudes of those dynamics differ between locations (Gasc et al., 2018; 
Gottesman et al., 2018; Lomolino et al., 2015; Towsey et al., 2014a). 
However, these dynamics have been demonstrated through counts of 
acoustic events and raw acoustic index values, and such diel dynamics 
would not preclude diel constancy for measures of temporal variability 
on shorter time scales. To illustrate, consider a site with dawn sound-
scapes dominated by near-constant birdsong and extremely quiet 
nighttime soundscapes. The magnitudes of the ACI for this site would be 
high at dawn and low during nighttime, but the standard deviations and 
autocorrelation ranges for the ACI within each time of day could be quite 
similar. The fact that single-site dispersions differed indicates that some 
sites exhibited fairly constant temporal variability across times of day 
while others had more divergent variability for different times of day. 

Single-site clusters almost always overlapped with each other, with 
the notable exceptions of Tropical Rainforest for the ACI (due to low 
standard deviations and high autocorrelation ranges) and Coral Reef 
andMongolian Grassland for Hf (due to extremely low and high standard 
deviations, respectively). Given the fact that sites included in this study 
were widely distributed across continents and biomes it is perhaps 
surprising that single-site clusters were not more distinct. However, 
because the soundscapes of one site can be so variable between times of 
day, and acoustic indices provide quantitative as opposed to qualitative 
descriptions of soundscapes (e.g., spectral entropy as opposed to 

Fig. 5. Soundscape classes based on their temporal variability characteristics.  
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acoustic community composition), it is understandable that index-based 
measures of temporal variability would yield overlapping single-site 
clusters. 

Within-site differences sometimes exceeded between-site differ-
ences. Considering Hf, the dispersion of Tropical Rainforest was greater 
than that of the combination of Penguin Colony, Miombo Swamp, 
Nebraska Prairie, and Magellanic Forest. For the BI, the dawn value of 
Miombo Swamp is closer to the dawn value of Magellanic Forest than 
any other Miombo Swamp values, and the daytime value of Tropical 
Rainforest is closer to the daytime values of Penguin Colony, Mongolian 
Grassland, Miombo Swamp, Nebraska Prairie, and Magellanic Forest 
(not to mention other times of day for those sites) than it is to other 
Tropical Rainforest values. The lack of spatial replicates in each location 
does not allow for statistical assessment of the relative importance of 
site- and time of day-based differences, but this initial graphical 
assessment with a single site for each general location suggests that both 
factors influence temporal soundscape variability. Some single site 
clusters are compact and/or distinct from those of other sites, but there 

is also substantial overlap between clusters with some clusters being 
relatively large. Generally, it can be assumed that there is greater change 
in the composition of the acoustically active animal community over the 
course of a 24-hour period in sites with large clusters than those with 
small clusters. One could argue that large clusters result from temporal 
acoustic niche partitioning (Krause, 1993; Pijanowski et al., 2011a), but 
it is more likely that temporal partitioning of acoustic activity at such a 
coarse temporal scale is driven by non-acoustic factors (e.g., predator or 
prey activity patterns and light availability). 

3.1.1.2. Trends based on time of day and sites. Within single-site clus-
ters, dawn values exhibited no clear trends, but those for other times of 
day tended to exhibit consistent directionality within the clusters. 
Daytime values tended to have high standard deviations and low auto-
correlation ranges, relative to the other times of day in the cluster, 
suggesting that daytime soundscapes are among the most highly vari-
able within a given 2-hour window. Dusk autocorrelation ranges tended 

Fig. 6. Temporal variability of sites plotted based on standard deviations and autocorrelation ranges. Plots feature different scales, but the y-axes are the same within 
each column of plots. 
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to be high, and nighttime standard deviations tended to be low, indi-
cating that these soundscapes exhibit less short-term temporal vari-
ability. These results for daytime and nighttime soundscapes support our 
hypothesis that nighttime soundscapes would be less variable than 
daytime soundscapes due to the consistency of quiet or insect/ 
amphibian-dominated nighttime soundscapes. 

Standard deviation values were always below average for Coral Reef, 
California Woodland, nighttime and dawn for Tropical Rainforest, and 
dusk and nighttime for Magellanic Forest. Based on the authors’ in situ 
and remote listening (both formal and informal), these sites—aside from 
Tropical Rainforest—all feature Class II and III soundscapes composed of 
little biophony and/or biophony from a small number of species. 

The soundscapes of Coral Reef are dominated by broadband sounds 
from snapping shrimp and occasional low-frequency (less than 2 kHz) 
fish choruses. This site is interesting in that its standard deviations were 
consistently low across indices and times of day whereas autocorrelation 
ranges were moderately to highly variable. Fig. 6C provides a prime 
example of this unusual feature; a probable explanation is that some 
times of day are dominated by extremely gradual, locally monotonic 
changes in index values while others are characterized by more random 
short-term fluctuations. The relatively high dawn and dusk autocorre-
lation ranges could be due to increases in temporally consistent snap-
ping shrimp activity during those times, whereas the lower nighttime 
values could be attributed to more variable fish choruses. 

Autocorrelation ranges for Tropical Rainforest tended to be much 
higher than average (with the exceptions of daytime values for the BI 
and Hf). This indication of low short-term temporal variability could 
come as a surprise, considering the fact that the site is a biodiversity 
hotspot within the global biodiversity hotspot of Mesoamerica (McDade 
et al., 1994; Myers et al., 2000) and contains a vast array of soniferous 
species. Moreover, those species’ sounds span the frequency spectrum 
and are produced with a diversity of methods. Despite this diversity, the 
high autocorrelation ranges point to temporal consistency and catego-
rization as Class I and II soundscapes. Despite the diversity of soniferous 
species at this site, its soundscapes are largely dominated by amphibian 
and insect sounds that are often consistent across any 2-hour analysis 
window, and this consistency likely explains the low standard deviations 
for this site. 

The most distinctive site in terms of temporal variability for any one 
index is Mongolian Grassland for Hf. Its autocorrelation ranges hover 
around the global mean, but its standard deviations far exceed all values 
except that of Tropical Rainforest dusk. Recordings from this site 
featured a large amount of wind noise and occasional clipping, so that 
geophony could explain this outlying site. Hf represents the entropy of a 
mean spectrum, and clipping, or even just loud wind could drastically 
affect the shape of that spectrum. Because such gusts could either be 
absent from or be predominant in any given minute of a 2-hour period, 
wind could be responsible for the high standard deviations associated 
with Hf at this site. 

3.1.2. 1-hour values in 24-hour windows 
On this longer time scale, several sites exhibit consistent relative 

temporal variability across indices. California Woodland is the most 
consistent, as it always displays low standard deviations and high 
autocorrelation ranges, indicating extremely low-variability Class II 
soundscapes. This result is unsurprising given the fact that the site 
featured very quiet soundscapes throughout the day. Tropical Rainforest 
and Coral Reef exhibited moderate to low standard deviations as well, 
but also exhibited moderate to low autocorrelation ranges, making their 
soundscapes Class III. Both sites featured some consistent biophony 
across a wide range of frequencies (e.g., birds, insects, and amphibians, 
at Tropical Rainforest and snapping shrimp at Coral Reef), but the 
soundscapes were also punctuated by less consistent biophonic and 
geophonic events like howler monkey sounds and rain at Tropical 
Rainforest and fish choruses at Coral Reef. 

Other sites were far less consistent across indices. Soundscapes from 

Mongolian Grassland, Nebraska Prairie, and Magellanic Forest would be 
classed differently for each of the three indices used in this study. This 
inter-index discrepancy highlights the fact that these indices measure 
different soundscape features (Sueur et al., 2014). This multifaceted 
information can be beneficial, but must be paired with supplemental 
soundscape analysis methods for well-informed interpretation (Gottes-
man et al., 2018). 

3.1.3. Implications of autocorrelation ranges 
Average autocorrelation ranges were highly variable between sites 

and times of day. 1-minute values in 2-hour windows ranged from less 
than 2 min (the ACI for California Woodland at dusk) to nearly 30 min 
(Hf for Coral Reef at dusk), and 1-hour values in 24-hour windows 
ranged from below 40 min (the BI for Tropical Rainforest) to nearly 140 
min (Hf for California Woodland). In this study we used autocorrelation 
ranges to characterize temporal variability, but the concept of temporal 
autocorrelation can also be considered problematic if one were to treat 
two autocorrelated measurements as independent. Hopefully this study 
has provided a baseline that researchers can reference if they wish to 
assume that two temporally separated soundscape measurements are 
independent. We do however advise caution in this situation, as 
thresholds for temporal correlation are clearly dependent on the value 
length and the analysis window considered. To truly derive benefits 
from the temporal richness of a continuous or near-continuous dataset, 
we recommend further investigation and application of time-series 
analysis methods. 

3.2. Question 2 (subsampling implications) 

We constructed six models (one for each combination of the three 
indices and the two full file lengths (12 and 60 min) for predicting 
subsample error based on total analysis time, number of subdivisions, 
and time of day. Model coefficients are presented in Table 3, and pre-
dicted values for several subdivision scenarios are presented in Fig. 7. 
While the subsample errors understandably differed between indices 
(mean raw 1-minute index values were 169.52 for the ACI, 53.20 for the 
BI, and 0.82 for Hf), the general shape of the predicted curves was 
similar across indices and 12-minute and 60-minute full file lengths. 
Initial increases in total analysis time yielded rapid decreases in sub-
sample error that subsequently became more gradual. This finding 
corresponds with the conclusions of Pieretti et al. (2015), who found 
that sampling just 1 min per 60 min yielded ACI values that were highly 
correlated with values from continuous recordings, and Bradfer-Law-
rence et al. (2019), who found that the variance in the standard error of 
seven different acoustic indices initially declined rapidly with increased 
recording time. In our study, increasing the number of subdivisions 
substantially reduced subsample error, especially at low values of total 
analysis time. This finding reflects those of Cook and Hartley (2018), 
who applied similar analytical methods, but used aural species identi-
fication as opposed to acoustic indices. As a whole, our results suggest 
that to maximize representation with subsampling, 1) the number of 
subdivisions should be maximized and 2) extensions of total analysis 
time between approximately 33% and 67% of the full file length will 
yield relatively negligible decreases in subsample error, especially with 
greater subdivision. 

3.2.1. Relative magnitudes of subsample error 
The magnitudes of subsample error differed across indices, relative 

to the global mean of raw 1-minute values for those indices. To illus-
trate, the approximate y-intercept for the ACI with one subdivision in 
12- and 60-minute full file lengths is 3—less than 2% of its global mean; 
the approximate y-intercept for the BI with one subdivision in 12- and 
60-minute full file lengths is 3.75—about 7% of its global mean; and the 
approximate y-intercept for Hf with one subdivision in 12- and 60-min-
ute full file lengths is 0.03—about 4% of its global mean. While these 
values differed relative to means, they were fairly consistent with the 
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Table 3 
Model coefficients for non-orthogonal polynomials with a log-transformed dependent variable.  

Model identifiers Independent variable coefficients 

Full file length 
(minutes) 

Index Total 
analysis time 

Total analysis 
time squared 

Total analysis 
time cubed 

Number of 
subdivisions 

Total analysis time * number 
of subdivisions interaction 

Time of day Location 
(intercept) 

12 ACI − 0.37766  0.04655 − 0.00329 − 0.27700  0.02025 dawn: 0 
daytime: 
0.12648 
dusk: 
− 0.00943 
nighttime: 
− 0.27236 

Penguin Colony: 
2.21545 
Tropical Rainforest: 
0.50257 
Mongolian 
Grassland: 1.89240 
Coral Reef: 1.09613 
Miombo Swamp: 
1.61909 
Nebraska Prairie: 
1.78475 
California 
Woodland: 
− 0.38210 
Magellanic Forest: 
0.32862 

12 BI − 0.37536  0.04747 − 0.00337 − 0.27373  0.01850 dawn: 0 
daytime: 
0.37637 
dusk: 0.20832 
nighttime: 
− 0.19333 

Penguin Colony: 
1.95067 
Tropical Rainforest: 
1.23210 
Mongolian 
Grassland: 1.08886 
Coral Reef: 0.10962 
Miombo Swamp: 
2.03693 
Nebraska Prairie: 
1.73133 
California 
Woodland: 0.26729 
Magellanic Forest: 
1.35347 

12 Hf − 0.36266  0.04742 − 0.00350 − 0.33975  0.02177 dawn: 0 
daytime: 
0.41328 
dusk: 0.27428 
nighttime: 
− 0.06735 

Penguin Colony: 
− 3.34498 
Tropical Rainforest: 
− 3.98913 
Mongolian 
Grassland: 
− 2.06614 
Coral Reef: 
− 7.06307 
Miombo Swamp: 
− 3.49335 
Nebraska Prairie: 
− 3.73391 
California 
Woodland: 
− 4.06468 
Magellanic Forest: 
− 3.98846 

60 ACI − 0.08883  0.00301 − 0.00004 − 0.13940  0.00240 dawn: 0 
daytime: 
0.07025 
dusk: 
− 0.07964 
nighttime: 
− 0.38945 

Penguin Colony: 
1.99019 
Tropical Rainforest: 
0.53770 
Mongolian 
Grassland: 1.76442 
Coral Reef: 0.89935 
Miombo Swamp: 
1.51449 
Nebraska Prairie: 
1.85724 
California 
Woodland: 
− 0.72618 
Magellanic Forest: 
0.34437 

60 BI − 0.09013  0.00314 − 0.00004 − 0.14886  0.00253 dawn: 0 
daytime: 
0.34626 
dusk: 0.34857 
nighttime: 
− 0.21633 

Penguin Colony: 
1.66119 
Tropical Rainforest: 
1.25099 
Mongolian 
Grassland: 0.80856 
Coral Reef: 

(continued on next page) 

D. Francomano et al.                                                                                                                                                                                                                           



Ecological Indicators 121 (2021) 106794

12

mean standard deviations indicated in Fig. 6. Across indices, the 
approximate y-intercept with one subdivision in 12- and 60-minute full 
file lengths represented about 75% of the mean standard deviation for 1- 
minute values in 2-hour analysis windows and about 55% of the mean 
standard deviation for 1-hour values in 24-hour analysis windows. This 
fact suggests that the magnitude of subsample error, as one might 
expect, is directly related to the variability of the raw index values. No 
index appeared to have such substantially greater subsample error that it 
would be problematic for representation through subsampling. Notably, 
we did not define an explicit threshold for acceptable error, as such a 
threshold would likely vary between studies. However, as stated above, 
the errors we documented are fairly small relative to the global means 
for each index. 

3.2.2. Implications for sampling schedule design and limitations for 
application 

We suggest that a “sweet spot” for maximizing soundscape repre-
sentation and efficiency in terms of battery life and storage consumption 
would be a schedule in which one records for about a third of the time 
they wish to represent and in which they subsample as much as possible, 
at least until a minimum recording duration of 1 min. As the Wildlife 
Acoustics SM4, one of the leading terrestrial automated field recording 
systems, does not allow scheduling for recording durations below 1 min, 
we did not analyze such subsampling schemes in this study. There is 
reason to suspect that the relationships we found could be extrapolated 
for recording durations below 1 min, especially for spectral indices that 
do not consider within-recording-duration temporal variability. How-
ever, for some indices like the ACI, one must set a minimum recording 
duration, if only to ensure that there are multiple temporal windows in a 
single file for appropriate calculation of the index. 

Subdividing, and especially extreme subdividing (sub-minute), 
comes with several notable drawbacks. First, it means that certain sound 
events may extend beyond the recording duration. This is the case for 
any recording duration if one considers long enough sound events, but if 
one considers the recognized units of biophony emitted by most animals, 
one might not capture those full units when recording durations drop 
below several minutes (or longer for exceptional taxa like whales). At 

extreme values below around 10 s, some sounds may become unrecog-
nizable for human listeners, potentially impeding any manual aural 
analysis. Additionally, the context of sounds is lost; extreme subdividing 
would obviously be inappropriate for studies considering the relation-
ships between short-duration (approximately less than 10-second) 
sounds or acoustic triggers. It is also worth considering that storage 
and analysis technologies will likely improve in the future, so the 
financial and logistical constraints that encourage subsampling today 
may become less relevant, and it could eventually be desirable to have 
the most complete archive possible of our contemporary soundscapes. 
Subdividing also decreases the duration of each recording, increasing 
the influence of whatever short-term sound event is recorded. Despite 
these drawbacks, it does yield increased temporal resolution, and it in-
creases the chances of capturing segments of longer sound events that 
might be otherwise missed (e.g., a 2-minute period of avian alert calls 
following a predator detection that begins in the 42nd minute of an hour 
would be missed if one was recording 10 min every 30 min). 

In a recent paper on the topic of PAM study design, Bradfer-Lawrence 
et al. (2019) argue in favor of continuous recording, but their hypo-
thetical use case seems to center around infrequent studies designed to 
characterize the soundscape of a given location as rapidly as possible, 
rather than long-term monitoring. While they consider seasonality a 
potential complication, it may well be the topic of interest in a different 
type of study. PAM can be employed to address an impressive diversity 
of ecological questions, some of which, like phenology or population 
dynamics, require long-term monitoring. While there seems to be a fairly 
universal desire for standardization of PAM methods, the diverse tools in 
the PAM jackknife often require different techniques in order to carve 
out an answer to the question at hand. 

4. Conclusions 

The vast diversity of Earth’s soundscapes makes them a fascinating 
topic of study and a compelling motivator for global conservation. While 
the findings of this study have revealed some consistency in their short- 
term temporal variability, this consistency lends support to the case for 
using soundscapes as ecological indicators. Differences in temporal 

Table 3 (continued ) 

Model identifiers Independent variable coefficients 

Full file length 
(minutes) 

Index Total 
analysis time 

Total analysis 
time squared 

Total analysis 
time cubed 

Number of 
subdivisions 

Total analysis time * number 
of subdivisions interaction 

Time of day Location 
(intercept) 

− 0.27410 
Miombo Swamp: 
1.93108 
Nebraska Prairie: 
1.80276 
California 
Woodland: 0.11799 
Magellanic Forest: 
1.37731 

60 Hf − 0.07845  0.00281 − 0.00004 − 0.17968  0.00308 dawn: 0 
daytime: 
0.17772 
dusk: 0.27893 
nighttime: 
− 0.23105 

Penguin Colony: 
− 3.35637 
Tropical Rainforest: 
− 3.55620 
Mongolian 
Grassland: 
− 2.17019 
Coral Reef: 
− 6.77298 
Miombo Swamp: 
− 3.46006 
Nebraska Prairie: 
− 3.64096 
California 
Woodland: 
− 4.08940 
Magellanic Forest: 
− 3.82858  
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variability between times of day and sites are of largely secondary 
importance to the fact that based on acoustic index values, substantial 
subsampling is still highly representative of full-duration recordings, at 
least when quantifying soundscapes through the limited set of fairly 
general metrics we employed. While the big data concerns associated 
with PAM remain (Gasc et al., 2017)—and are of especial importance in 
political and economic climates that are not supportive of scientific 
research—the findings of this study suggest that judiciously applied 
subsampling can still yield valid results while minimizing the physical 
and financial restraints associated with big data storage and processing. 
The utility of soundscape-based research is greatly enhanced through 
global involvement and the potential for biogeographically important 
findings, and optimized subsampling may help promote such involve-
ment and discovery. 
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